
JPEG Compression – Method 96

JPEG Compression

Document: JPEG Compression.doc
Version 1.0

WinZip Computing

Copyright© 2008 WinZip® International LLC Page 1 of 20

JPEG Compression – Method 96

Table of Contents

1. PREREQUISITES...3

2. OVERVIEW ..3

3. ZIP ENHANCEMENTS...4
3.1 METHOD AND VERSION..4
3.2 PROPERTIES HEADER ...4
4. COMPRESSED STREAM..4
4.1 BUNDLES..4

4.1.1 Headers ...4
4.1.2 Metadata..5
4.1.3 Scan Data..5

5. JPEG COMPRESSION ..5
5.1 VALIDATION ..5
5.2 METADATA PARSING ...7
5.3 METADATA COMPRESSION...7
5.4 SCAN DECODING...7

5.4.1 Scan Slice..9
5.4.2 Restart Markers ...9

5.5 SCAN COMPRESSION ..10
5.5.1 Entropy Encoding ..10

5.6 BLOCK COMPRESSION...10
5.6.1 Notation ...10
5.6.2 Primitives ...10

5.6.2.1 SUM ... 10
5.6.2.2 AVG ... 11
5.6.2.3 BDR ... 11

5.6.3 Category ..12
5.6.4 Binarization..12
5.6.5 End of Block ..12

5.6.5.1 EOB Encoding.. 13
5.6.5.2 EOB Context .. 13

5.6.6 AC Coefficients..13
5.6.6.1 Zero/Non-Zero Encoding.. 13
5.6.6.2 Pivot Encoding ... 14
5.6.6.3 Value Encoding .. 14
5.6.6.4 Sign Encoding .. 15

5.6.6.4.1 Sign Context.. 15
5.6.7 DC Coefficient ...16

5.6.7.1 DC Prediction ... 16
5.6.7.2 Prediction Refinement .. 17
5.6.7.3 DC Encoding .. 17

5.6.7.3.1 Value Encoding ... 17
5.6.7.3.2 Sign Encoding ... 18

6. ARITHMETIC CODER..18

Copyright© 2008 WinZip® International LLC Page 2 of 20

JPEG Compression – Method 96

1. Prerequisites
This document assumes familiarity with the ZIP file format (Application Note 6.3 or later)
together with knowledge of the JPEG image compression standard, LZMA encoding
(Lempel-Ziv-Markov chain-Algorithm) and entropy coding methods.

2. Overview
The JPEG compression algorithm is designed to compress image files created using the
Joint Photographic Experts Group (JPEG) standard. JPEG files are inherently difficult to
compress because of their built-in compression based on a combination of run-length and
entropy coding techniques. The JPEG compression algorithm works by first unwinding this
preexisting compression and then recompressing the file using an improved method that
typically results in a 20-25% savings in space. The algorithm is lossless and reversible so
that when the file is decompressed, the original entropy coding can be reapplied resulting in
a bit for bit match with the original.

The following diagram illustrates the process:

JPEG file

Decompression

Decompress
metadata

Decompress
image data

Archive

Reapply original
compression

Validate

Undo existing
compression

Compress
metadata using

new method

Compress
image data
using new

method

Archive

JPEG file

Compression

Copyright© 2008 WinZip® International LLC Page 3 of 20

JPEG Compression – Method 96

3. ZIP Enhancements
JPEG compression is integrated into the ZIP file format consistent with other compression
methods described in the published Application Note on the ZIP file format.

3.1 Method and Version
The compression method field within the ZIP Local and Central Header records is set to the
value 96 to indicate the data is compressed using JPEG Compression. The Version needed
to extract field within the ZIP Local and Central Header records is set to 2.0; the same value
as with the Deflate algorithm.

3.2 Properties Header
The JPEG compressed data stream is prefixed with a Properties Header that immediately
follows the Local Header and if present, the Encryption Header. The Properties Header
stores information needed to decompress the compressed data. The format of the
Properties Header is as follows:

Field Size Description
Properties Size 1 Byte Size of the properties header (in bytes) including this

field. The minimum value is 4.
Version Information 1 Byte JPEG compression version number. The major version

number is stored in bits 4-7. The minor version number
is stored in bits 0-3. Currently set to 0x10 (1.0).

Compression Method 1 Byte JPEG compression method identifier. A value of 0 is
explicitly invalid. Currently set to Method 1.

Options 1 Byte Options specific to Compression Method. For Method
1, bits 0-4 contain what is described as a slice value.
Currently set to 8. All other bits are set to 0.
Properties Header

4. Compressed Stream
The compressed data stream encompasses one or more bundles consisting of metadata
(JPEG markers) followed by the image scan data. For baseline images there are usually two
bundles; a larger bundle containing most of the metadata and scan data and a smaller
bundle that indicates the end of the image. The bundle layout is shown here:

Primary Header Extension Header (optional) Metadata Scan data (optional)

Bundle Layout

4.1 Bundles

4.1.1 Headers
The Bundle Headers consist of two fields, Uncompressed Size and Compressed Size, which
represent the metadata:

Field Size
Uncompressed Size 2/4 Bytes
Compressed Size 2/4 Bytes

Bundle Header

Copyright© 2008 WinZip® International LLC Page 4 of 20

JPEG Compression – Method 96

For the Primary Header, the width of these fields is 2 bytes (16-bits) allowing for metadata
sizes up to 65534 bytes. If the metadata exceeds 65534 bytes then both fields are set to
0xFFFF and the optional Extension Header is used. The Extension Header has the same
format as the Primary Header, except the fields are widened to 4 bytes (32-bits) allowing for
metadata sizes up to the supported maximum of 16 MB.

4.1.2 Metadata
The JPEG metadata follows the Primary Header and if present, the Extension Header. The
metadata is compressed using the LZMA compression algorithm. Details of the LZMA
implementation are further described in section 5.3. All metadata up to and including the
SOS (Start of Scan) or EOI (End of Image) markers is compressed as a single unit. If the
compressed size exceeds the uncompressed size then the Compressed Size field of the
bundle header is set to zero and the metadata is stored without compression.

4.1.3 Scan Data
The scan data follows the metadata if the SOS marker is present in the metadata. The
original Huffman encoded scan data is first decoded into 8x8 DCT blocks and then
recompressed using an improved entropy coder. Compression of the DCT blocks forms the
core of the JPEG compression algorithm and is fully described in section 5.

5. JPEG Compression
JPEG files are normally either JPEG File Interchange Format (JFIF) files or Exchangeable
Image File Format (Exif) files with the latter being used by most digital cameras. Both
formats are based on the JPEG Interchange Format (JIF) as specified in Annex B of the
standard. The differences between the two are small, relating to a subset of markers. The
marker differences are inconsequential to the compression algorithm so both formats are
readily supported.

The JPEG compression algorithm supports the following image types:

• Baseline and extended (sequential) encoding

• 8 or 12 bits/sample

• Scans with 1, 2, 3 or 4 components

• Interleaved and non-interleaved scans

5.1 Validation
Before compressing a JPEG file its contents are validated. Validation is necessary because
the JPEG algorithm requires analyzing the structure of an image, thereby requiring
unsupported or corrupt JPEG images be rejected. Also, validation ensures that the original
file can be reconstructed exactly when decompressed.

As part of the validation process the metadata markers are parsed and verified. There are
several markers required by the compression algorithm and those not required are
preserved. The primary marker that identifies a JPEG file, SOI (Start Of Image), must be
found within the first 128 bytes of the file. All data preceding the SOI marker is considered
unknown metadata.

Copyright© 2008 WinZip® International LLC Page 5 of 20

JPEG Compression – Method 96

To complete the validation process the image scans are decoded to ensure there are no
errors with the entropy encoding. After the last scan is decoded the EOI (End Of Image)
marker is parsed. Any data beyond the EOI marker is considered unknown metadata.

The following diagram illustrates the process:

Search within
first 128 bytes
for SOI marker

Parse next
marker

Huffman decode
scan

SOS
marker?

No

EOI
marker?

Yes

No

Yes

Done

Yes

Not a JPEG
No

SOI
marker?

Validation

JPEG file

Copyright© 2008 WinZip® International LLC Page 6 of 20

JPEG Compression – Method 96

5.2 Metadata Parsing
The parser recognizes the following markers. The first five markers are required by the
compression algorithm:

Marker Description Required
SOF0, SOF1 Start Of Frame (Baseline, Extended Sequential)
DHT Define Huffman Table
DQT Define Quantization Table
SOS Start Of Scan
SOI Start Of Image
EOI End Of Image
RSTx Restart
DRI Define Restart Interval

Recognized Markers

It is possible that the end of the image is reached without finding the EOI marker. In this
case, the image is technically malformed but the situation is tolerated and handled as if the
EOI marker was found.

5.3 Metadata Compression
All metadata up to and including the SOS or EOI markers is compressed as a single unit.
Any data beyond the EOI marker is compressed along with the EOI marker. The data is
compressed using the LZMA compression algorithm. Currently, version 4.57 of LZMA SDK
is used though it is assumed newer versions will work equally well. The Coder Properties
are left in their default state. The dictionary size varies from a minimum of 1k to a maximum
of 512k with intermediate sizes determined using the formula:

DictionarySize = ceil(MetadataSize / 512) * 512

Note that the Coder Properties are not actually written to the compressed stream; that is to
say, the WriteCoderProperties() method is not invoked. Instead, the LZMA compression
parameters are inferred from the Properties Header as described in section 3.2.

Prior to writing the LZMA compressed stream a Bundle Header is initialized and written as
described in section 4.1.1.

5.4 Scan Decoding
The SOS marker initiates the start of the entropy coded scan data. For interleaved scans the
MCU component blocks are decoded and separated, as the compression algorithm works
with each component independently. If there are more than a given number MCUs within a
scan (characterized as a slice) then the scan is sectioned into slices in an effort to limit the
amount of buffering required. After the DCT blocks have been decoded they are passed one
by one to the improved compression engine. This process continues until the end of the
scan is reached as shown in the following diagram:

Copyright© 2008 WinZip® International LLC Page 7 of 20

JPEG Compression – Method 96

Decode MCU into
component blocks

End of
Slice?

Yes

Yes

Done

Buffer
Component 1

blocks

Buffer
Component 2

blocks

Buffer
Component 3

blocks

End of
Scan?

No

Compress
Component 1

blocks

Compress
Component 2

blocks

Compress
Component 3

blocks

No

Start Of Scan

Scan Decoding

Copyright© 2008 WinZip® International LLC Page 8 of 20

JPEG Compression – Method 96

5.4.1 Scan Slice
Slices are a mechanism to reduce the amount of buffering required when decoding a scan.
They are optional and the compressor determines their use. The size of a slice is variable. A
slice size of 0 indicates slices are not used; otherwise, the slice size is specified as a 2n
count of MCUs. The minimum slice size is 27 and the maximum size is 237 — represented as
values in the range of 1 to 31 respectively. The following table shows all possible slice
values and the equivalent 2n sizes:

Value 2n Size Value 2n Size
0 — 16 222

1 27 17 223

2 28 18 224

3 29 19 225

4 210 20 226

5 211 21 227

6 212 22 228

7 213 23 229

8 214 24 230

9 215 25 231

10 216 26 232

11 217 27 233

12 218 28 234

13 219 29 235

14 220 30 236

15 221 31 237

Slice Values

The slice value is stored in the Options field of the Properties Header as described in
section 3.2. The slice size is determined by converting the 2n size to a multiple of the row
size for the scan. Using X and Y to denote the scan’s dimensions in MCUs, the slice size is
determined using the following formula:

SliceSize = ceil(Y / ceil(Y / max(2nSize / X, 1))) * X

At the end of each slice, the encoder’s FLUSH routine is called but its state otherwise
remains unchanged.

5.4.2 Restart Markers
Restart Markers are recognized within the entropy coded data but are not explicitly written to
the compressed data stream. During decompression when the entropy coding is reapplied,
the markers are recreated at the defined restart interval.

Copyright© 2008 WinZip® International LLC Page 9 of 20

JPEG Compression – Method 96

5.5 Scan Compression
For interleaved scans, compression is performed on a component by component basis in
the same order as encountered within the MCU. Non-interleaved scans have a single
component by definition. Each of the component’s 8x8 DCT blocks are Huffman and run-
length decoded. The DCT coefficients remain quantized and in zigzag scanning order. In
addition to the current block, two additional DCT blocks must be maintained for the
compression engine; the block above and the block to the left of the current block. These
are referred to as the North and West blocks respectively.

5.5.1 Entropy Encoding
Component blocks are compressed using binary arithmetic coding (BAC) combined with
unique probability models that form the core of the compression algorithm. When working
with the combination of interleaved scans and slices, there is a requirement that concurrent
BAC states are kept for each component in the scan. The reason for this is that states are
preserved across slice boundaries.

5.6 Block Compression
The component’s quantization table, North and West blocks and previously seen coefficients
within current block encompass all the requirements of the block compressor. The EOB is
compressed first followed by the AC terms in the order EOB to AC1 followed by DC.

5.6.1 Notation
We use B to denote an 8x8 DCT block, Bc to denote the current block, Bn to denote the
neighboring block North of Bc and Bw to denote the neighboring block West of Bc. We use k
to denote the kth zigzag position within a block and B[k] to denote the DCT coefficient at the
kth position of B. Where the component’s quantization table is required, S denotes the
quantization table in zigzag order.

5.6.2 Primitives
There are three primitives that combined, form the basis for block compression. They are
identified as SUM, AVG and BDR and are functions of k and/or Bc, Bw, and Bn. Along the
edge of a scan where Bw or Bn may not exist, they are substituted by a null block – i.e., a
block where all coefficients are zero.

5.6.2.1 SUM
SUM(B, k) is defined as the sum of all coefficient absolute values below and to the right of k
within a block. The x’s in the diagram below illustrate the case of k = 24:

 k x x x x
 x x x x x
 x x x x x
 x x x x x
 x x x x x

8x8 DCT Block

Each x is summed using:

Copyright© 2008 WinZip® International LLC Page 10 of 20

JPEG Compression – Method 96

sum += abs(B[x])

5.6.2.2 AVG
AVG(Bn, Bw, k) is defined as the average of coefficient absolute values at k and the
coefficient absolute values at positions directly above, to the left and to the upper-left of k for
both the North and West blocks. The x’s in the diagram below illustrate the case of k = 24:

 x x
 x k

8x8 DCT Block

If k is located near the top or left border of a block, only the available x’s participate. AVG
also considers coefficient quantization. Each x is summed using:

sum += (abs(Bn[x]) + abs(Bw[k])) * S[x] / S[k]

The coefficient at k is then added and the average is computed:

avg = (sum + abs(Bn[k]) + abs(Bw[k]) + count) / (2 * count)

5.6.2.3 BDR
BDR(Bc, Bn, Bw k), is valid when k is located within the top or left border of a block. The
coefficient at k and the coefficient at positions directly below or to the right of k participate.
The x’s in the diagrams below illustrate all possible k:

North Block

 0 1 2 3 4 5 6 7
0 k k k k k k k
1 x x x x x x x
2

 0 1 2
0
1 k x
2 k x
3 k x
4 k x
5 k x
6 k x
7 k x

West Block

BDR also considers coefficient quantization. For k within the first row, the computation is:

bdr = Bn[k] – (Bn[x] + Bc[x]) * S[x] / S[k]

For k within the first column, the computation is:

bdr = Bw[k] – (Bw[x] + Bc[x]) * S[x] / S[k]

Copyright© 2008 WinZip® International LLC Page 11 of 20

JPEG Compression – Method 96

5.6.3 Category
The concept of a value’s magnitude, designated its category, is used extensively by the
compression procedures. Mathematically it’s expressed as:

cat = ceil(log2(abs(value) + 1))

A sample of values and the equivalent categories is shown here:

Value Category Value Category
0 0 8 4
1 1 9 4
2 2 10 4
3 2 11 4
4 3 12 4
5 3 13 4
6 3 14 4
7 3 15 4

Categories

The function CAT(N) is defined as returning the category of any positive integer N.

5.6.4 Binarization
The coding of coefficient values is done using a scheme called binarization. Binarization
essentially maps a positive integer into a universal code. A generalization of Elias gamma
coding is used. The table below shows how the code compares with other codes:

Value Implemented
Code

Elias Gamma Exp-Golomb (k=0)

0 0 — 0
1 10 0 10:0
2 110:0 10:0 10:1
3 110:1 10:1 110:00
4 1110:00 110:00 110:01
5 1110:01 110:01 110:10
6 1110:10 110:10 110:11
7 1110:11 110:11 1110:000
8 11110:000 1110:000 1110:001
9 11110:001 1110:001 1110:010

Code Comparison

Codes are mapped across multiple BAC bins based on context. Generally, the unary part of
the code maps to one set of bins and the binary remainder another set.

5.6.5 End of Block
The first step prior to coding the AC coefficients is to determine the End of Block (EOB). The
EOB is defined as the last non-zero coefficient for the block in zigzag scanning order.
Values within the range of 1 to 63 coincide with terms AC1 to AC63 respectively. The value
0 indicates that all AC terms are zero.

Copyright© 2008 WinZip® International LLC Page 12 of 20

JPEG Compression – Method 96

5.6.5.1 EOB Encoding
Encoding of EOB is accomplished using a binary tree. Six bits are needed to represent all
possible EOB values, resulting in 63 bins allocated to the tree as follows:

Bin Bit
0 5
1-2 4,4
3-6 3,3,3,3
7-14 2,2,2,2,2,2,2,2
15-30 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
31-62 0,0

 Bin Allocation

5.6.5.2 EOB Context

The context used to encode EOB is determined from the North and West blocks. SUM(B, 0)
is evaluated for the neighboring blocks and the average is computed:

avg = (SUM(Bn, 0) + SUM(Bw, 0) + 1) / 2

Along the edges of the scan only a single block participates:

avg = SUM(Bn, 0)

or

avg = SUM(Bw, 0)

For the very first block where no neighbor exists, the context is 0. For all other blocks, the
context is determined by computing:

ctx = min(CAT(avg), 12)

The total number of bins required to encode EOB is therefore 63∗13 or 819.

5.6.6 AC Coefficients
If EOB is zero then the coding of AC coefficients is not necessary. Coding proceeds with the
coding of DC. For a non-zero EOB, AC coefficients are coded in zigzag order from highest
to lowest (EOB to AC1). For all coefficients other than at EOB, a zero/non-zero decision is
coded, a pivot, an absolute value and a sign. By definition, the coefficient at EOB is a non-
zero value, thus the zero/non-zero decision is not necessary.

5.6.6.1 Zero/Non-Zero Encoding
Zero/Non-Zero codes the decision (B[k] ≠ 0). Encoding of zero/non-zero is not required for
the coefficient at EOB.

For k located within the first row or column of the block, BDR(Bc, Bn, Bw, k) is evaluated:

val1 = abs(BDR(Bc, Bn, Bw, k))

For all other k, AVG(Bc, k) is evaluated:

val1 = AVG(Bc, k)

The SUM(Bc, k) is then evaluated:

Copyright© 2008 WinZip® International LLC Page 13 of 20

JPEG Compression – Method 96

val2 = SUM(Bc, k)

The context to encode zero/non-zero is then determined by computing:

ctx = ((k-1) * 3 + min(CAT(val1), 2)) * 6 + min(CAT(val2), 5)

The total number of bins required is therefore 62∗6∗3 or 1116.

5.6.6.2 Pivot Encoding
Pivot codes the decision (abs(B[k]) ≥ 2). Encoding of pivot is not required if the AC value is
zero.

For k located within the first row or column of the block, BDR(Bc, Bn, Bw, k) is evaluated:

val1 = abs(BDR(Bc, Bn, Bw, k))

For all other k, AVG(Bc, k) is evaluated:

val1 = AVG(Bc, k)

The SUM(Bc, k) is then evaluated:

val2 = SUM(Bc, k)

The context to encode the pivot is then determined by computing:

ctx = ((k-1) * 5 + min(CAT(val1), 4)) * 7 + min(CAT(val2), 6)

The total number of bins required is therefore 63∗5∗7 or 2205.

5.6.6.3 Value Encoding
Encoding of AC value is not required if its absolute value is less than two. Allowable AC
values fall within the range of -16383 to 16383. The sign bit is coded separately; therefore
14 bits are required to encode the value.

For k located within the first row or column of the block, BDR(Bc, Bn, Bw, k) is evaluated:

val1 = abs(BDR(Bc, Bn, Bw, k))

For all other k, AVG(Bc, k) is evaluated:

val1 = AVG(Bc, k)

The SUM(Bc, k) is also evaluated:

val2 = SUM(Bc, k)

For k located within the first row of the block, k’s column is determined. The column is
adjusted to a value between 0 and 6:

val3 = col – 1

For k located within the first column of the block, k’s row is determined. The row is adjusted
to a value between 0 and 6:

val3 = row – 1

Copyright© 2008 WinZip® International LLC Page 14 of 20

JPEG Compression – Method 96

For all other k, the category of k is determined, resulting in a value between 0 and 6:

val3 = CAT(k – 4)

In addition, for the conditions of k located within the first row, k located within the first
column, and all other k; we shell use n to denote this, where 0 ≤ n < 3.

The AC absolute value is decremented by 2 and binarized as described in section 5.6.4.
Coding of the unary magnitude is capped at 9. The context to encode the magnitude is
determined by computing:

ctxm = (n * 9 + min(CAT(val1), 8)) * 9 + min(CAT(val2), 8)

The context to encode the binary remainder is determined by computing:

ctxr = n * 7 + val3

The total number of bins required to encode the value is therefore 3∗(9∗9∗9+13∗7) or 2460.

5.6.6.4 Sign Encoding
Encoding of AC sign is not required if the AC value is zero. The method of encoding AC sign
is determined from the location of k within the block. For k located within the first and second
rows or first and second columns, as illustrated by the x’s in the diagram below, a context is
used for the encoding of AC sign:

 x x x x x x x
x x x x x x x x
x x
x x
x x
x x
x x
x x

8x8 DCT Block

For all other k, AC sign is coded with a fixed probability.

5.6.6.4.1 Sign Context
For k located within the first row or column of the block, BDR(B, Bn, Bw, k) is evaluated. If the
result is zero, the AC sign is coded with fixed probability. For a non-zero result, the sign is
taken:

sgn = BDR(Bn, Bw, k) < 0

For k located within the second row of the block with the exception of k = AC4, the
coefficient at the same position from the North block is examined. Along the top edge of the
scan where Bn does not exist, it is substituted by a null block. If the examined value is zero,
the AC sign is coded with fixed probability. For non-zero values, the sign is taken:

sgn = Bn[k] < 0

For k located within the second column of the block with the exception of k = AC4, the
coefficient at the same position from the West block is examined. Along the left edge of the
scan where Bw does not exist, it is substituted by a null block. If the examined value is zero,
the AC sign is coded with fixed probability. For non-zero values, the sign is taken:

Copyright© 2008 WinZip® International LLC Page 15 of 20

JPEG Compression – Method 96

sgn = Bw[k] < 0

For k = AC4, the average Bn[k] and Bw[k] is computed. Along the edge of a scan where Bw or
Bn may not exist, they are substituted by a null block. If the computed result is zero, the AC
sign is coded with fixed probability. For a non-zero result, the sign is taken:

sgn1 = (Bn[k] < 0) ? -1 : (Bn[k] > 0) ? 1 : 0
sgn2 = (Bw[k] < 0) ? -1 : (Bw[k] > 0) ? 1 : 0

if ((sgn + sgn) != 0) 1 2
 sgn = (sgn1 + sgn2) < 0

There are total of 27 k for which a context is used for encoding AC sign. Using n to denote
the nth k for which a context is used, where 0 ≤ n < 27, the context to encode AC sign is
determined by computing:

ctx = (n * 3 + min(CAT(abs(Bc[k])) / 2, 2)) * 2 + sgn

The total number of bins required to encode AC sign is therefore 27∗3∗2 or 162.

5.6.7 DC Coefficient
Coding of DC follows the coding of AC coefficients. DC is first predicted using information
from neighboring blocks as well as AC coefficients from the current block. The absolute
value of the residual is then coded followed by the residual’s sign.

5.6.7.1 DC Prediction
The initial DC prediction is based on DC values from the North and West blocks as well as
AC values directly below and to the right of DC, that include the current block. The x’s in the
diagram below illustrate:

 0 1 2 3
0 x x
1 x
2
3

For the North block we calculate:

p0 = round(Bn[0] – 2.2076 * S[2] / (2 * S[0]) * (Bn[2] – Bc[2]))

And for the West block:

p1 = round(Bw[0] – 2.2076 * S[1] / (2 * S[0]) * (Bw[1] – Bc[1]))

Avoiding floating point, the computations are:

t0 = Bn[0] * 10000 – 11038 * S[2] * (Bn[2] – Bc[2]) / S[0]
p0 = ((t0 < 0) ? (t0 - 5000) : (t0 + 5000)) / 10000

And:

t1 = Bw[0] * 10000 – 11038 * S[1] * (Bw[1] – Bc[1]) / S[0]
p1 = ((t1 < 0) ? (t1 - 5000) : (t1 + 5000)) / 10000

Copyright© 2008 WinZip® International LLC Page 16 of 20

JPEG Compression – Method 96

For the very first block where no neighbor exists, the predicted DC is 0. Along the edges of a
scan where only a single neighbor exists, the predicted DC is either p0 or p1, depending on
which edge the block is located. For all other blocks, the prediction is further refined.

5.6.7.2 Prediction Refinement
Refinement of the predicted DC again uses the North and West blocks as well as the current
block, using AC coefficients located within the first column and first row of the block as
shown by the x’s below:

 0 1 2
0
1 x
2 x
3 x
4 x
5 x
6 x
7 x

 0 1 2 3 4 5 6 7
0 x x x x x x x
1
2

West Block

North Block

For the North block, we compute for each x:

d0 += abs(abs(Bn[x]) – abs(Bc[x]))

And for the West block:

d1 += abs(abs(Bw[x]) – abs(Bc[x]))

The final calculation giving our prediction is:

DCp = (2
-d0 * p0 + 2

-d1 * p1) / (2
-d0 + 2-d1)

Again, avoiding floating point, we compute:

if (d0 > d1)
 DCp = ((1 << min(d0 – d1, 31)) * p1 + p0) / (1 + (1 << min(d0 – d1, 31)))
else
 DCp = ((1 << min(d1 – d0, 31)) * p0 + p1) / (1 + (1 << min(d1 – d0, 31)))

5.6.7.3 DC Encoding
DC is coded using the residual from the predicted value:

residual = Bc[0] – DCp

Allowable DC values fall within the range of -16384 to 16383, causing the residual to fall
between -32767 and 32767. The sign bit is coded separately; therefore 15 bits are required
to encode the value.

5.6.7.3.1 Value Encoding
The context used to encode the residual value is determined from the AC Coefficients.
SUM(Bc, 0) is first evaluated:

sum = SUM(Bc, 0)

Copyright© 2008 WinZip® International LLC Page 17 of 20

JPEG Compression – Method 96

The context is then determined by computing:

ctx = min(CAT(sum), 12)

The residual absolute value is binarized as described in section 5.6.4. Coding of the unary
magnitude is capped at 10. Both the magnitude and binary remainder are encoded using
ctx.

The total number of bins required to encode the value is therefore 10∗13+14∗13 or 312.

5.6.7.3.2 Sign Encoding
Encoding of the residual sign is not required if the residual is zero. The context used to
encode the sign is determined from the sign of the predicted DC and the signs of the DC
values of the North and West blocks:

sgnn = Bn[0] < 0
sgnw = Bw[0] < 0
sgnp = DCp < 0

Along the edges of the scan, where a neighboring block may not exist, sgnn or sgnw is set to
zero, depending on which edge the block is located.

The context is then determined by computing:

ctx = (sgnn * 2 + sgnw) * 2 + sgnp

The total number of bins required to encode the sign is therefore 2∗2∗2 or 8.

6. Arithmetic Coder
The arithmetic coder is a high speed, finite precision, binary arithmetic coder (BAC) with
probabilities represented in the logarithmic domain. Details of the coder can be found in U.S.
patent no. 4,791,403. The probability table is constructed using the parameters (kavg = 5,
kmax = 11) and is reproduced here:

i logp lqp nmaxlp halfi dbli

0 1024 0 16384 8 0

1 895 272 16110 8 1

2 795 502 15105 7 2

3 706 726 14826 7 3

4 628 941 14444 7 4

5 559 1150 13975 6 5

6 493 1371 13804 6 6

7 437 1578 13547 6 7

Copyright© 2008 WinZip® International LLC Page 18 of 20

JPEG Compression – Method 96

8 379 1819 13265 6 8

9 331 2044 13240 6 7

10 287 2278 12915 6 7

11 247 2521 12844 6 6

12 212 2765 12720 6 6

13 186 2971 12648 6 6

14 158 3227 12482 6 6

15 143 3382 12441 6 6

16 127 3566 12319 6 6

17 110 3788 12320 6 6

18 98 3965 12250 6 6

19 84 4200 12180 8 6

20 72 4435 12168 9 6

21 65 4590 12155 10 6

22 59 4737 12154 10 6

23 53 4899 12084 10 6

24 48 5050 12096 10 6

25 45 5147 12105 10 7

26 42 5250 12096 10 8

27 40 5325 12080 9 8

28 37 5441 12062 9 9

29 35 5527 12075 8 9

30 33 5617 12078 8 10

31 30 5758 12060 7 10

32 28 5863 12068 7 10

33 26 5976 12090 6 10

34 23 6157 12075 6 10

35 21 6295 12075 6 10

36 19 6447 12103 5 9

Copyright© 2008 WinZip® International LLC Page 19 of 20

JPEG Compression – Method 96

Copyright© 2008 WinZip® International LLC Page 20 of 20

37 17 6616 12121 5 8

38 15 6806 12150 4 7

39 13 7024 12181 4 6

40 11 7278 12221 3 6

41 9 7585 12294 3 5

42 7 7972 12411 3 4

43 5 8495 12615 3 3

44 4 8884 13120 2 3

45 3 9309 13113 2 3

46 2 10065 14574 1 2

47 1 11689 21860 0 1

48 1024 0 0 0 0

In order to support fixed statistics an additional entry is appended to the probability table
(index 48). The QSMALLER and QBIGGER routines are also modified as shown in the
following figures:

I < 47?

Yes

END

No

I ← I + 1

K ≤
KMIN1?

Yes

No

END

QSMALLER

INCRSV ← 0

I < 48?

Yes

No

FIG. 18

END

QBIGGER

FIG. 13

	1. Prerequisites
	2. Overview
	3. ZIP Enhancements
	3.1 Method and Version
	3.2 Properties Header

	4. Compressed Stream
	4.1 Bundles
	4.1.1 Headers
	4.1.2 Metadata
	4.1.3 Scan Data

	5. JPEG Compression
	5.1 Validation
	5.2 Metadata Parsing
	5.3 Metadata Compression
	5.4 Scan Decoding
	5.4.1 Scan Slice
	5.4.2 Restart Markers

	5.5 Scan Compression
	5.5.1 Entropy Encoding

	5.6 Block Compression
	5.6.1 Notation
	5.6.2 Primitives
	5.6.2.1 SUM
	5.6.2.2 AVG
	5.6.2.3 BDR

	5.6.3 Category
	5.6.4 Binarization
	5.6.5 End of Block
	5.6.5.1 EOB Encoding
	5.6.5.2 EOB Context

	5.6.6 AC Coefficients
	5.6.6.1 Zero/Non-Zero Encoding
	5.6.6.2 Pivot Encoding
	5.6.6.3 Value Encoding
	5.6.6.4 Sign Encoding
	5.6.6.4.1 Sign Context

	5.6.7 DC Coefficient
	5.6.7.1 DC Prediction
	5.6.7.2 Prediction Refinement
	5.6.7.3 DC Encoding
	5.6.7.3.1 Value Encoding
	5.6.7.3.2 Sign Encoding

	6. Arithmetic Coder

